 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems
Fall 2000
Midterm Exam \#2

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Extend the set

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

to form a basis for the set with all 2×2 matrices with real coefficients.
Then, determine the representation of

$$
x=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

with respect to the basis defined.

Problem 2:

Consider the linear operator

$$
A=\left[\begin{array}{llll}
1 & 4 & 7 & 3 \\
2 & 0 & 2 & 1 \\
3 & 4 & 9 & 4
\end{array}\right]
$$

determine its rank and nullity, then find a basis for the range space and the null space of the linear operator, A, respectively ?

Problem 3:

Show that if the set $\{u, v, w\}$ is linearly independent, then so is the set $\{u+v, v+w, w+u\}$.

Problem 4:

Show if the following sets

$$
\left[\begin{array}{c}
2 \\
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
2 \\
2 \\
-4 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-3 \\
2
\end{array}\right]
$$

span the same subspace V of $\left(\mathfrak{R}^{4}, \mathfrak{R}\right)$.

Problem 5:

Let

$$
V^{\perp}=\left\{x \left\lvert\, x=\alpha\left[\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right]+\beta\left[\begin{array}{c}
-1 \\
5 \\
6 \\
2
\end{array}\right]+\gamma\left[\begin{array}{c}
-1 \\
2 \\
2 \\
1
\end{array}\right]\right., \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathfrak{R}\right\},
$$

determine the original space, V, and find an orthogonal basis for V. For $x=\left[\begin{array}{llll}-2 & 4 & 4 & 2\end{array}\right]^{T}$, find its direct sum representation of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in V$, and $x_{2} \in V^{\perp}$.

